VICARIOUS C-AMINATION OF 1-METHYL-4-NITROPYRAZOLE

V. A. Lopyrev, V. N. Elokhina, O. V. Krylova, A. S. Nakhmanovich,

L. I. Larina, M. S. Sorokin, and A. I. Vokin

Aminonitropyrazoles are widely used in organic chemistry because of their high reactivity. Several methods are known for preparation of these compounds. 3-Amino-4-nitropyrazole was obtained in 87% yield by the Hofmann rearrangement of 4-nitropyrazole-3-carboxamide at 50-55°C [1] or by treatment of 3(5)-acetamino-4-nitropyrazole with 20% HCl [2]. 5-Amino-3-nitropyrazole is formed on reduction of 3,5-dinitropyrazole with hydrazine in the presence of FeCl₃ [3]. 5-Amino-1-methyl-4-nitropyrazole was obtained by heating of 5-bromo-1-methyl-4-nitropyrazole with aqueous ammonia in an autoclave at 190°C [4] or by nitration of 5-amino-1-methylpyrazole with a mixture of sulfuric and nitric acids [5]. N-Amination of substituted 3-, 4-, and 5-nitropyrazoles with hydroxylamino-O-sulfonic acid in aqueous alkaline solution is also known [6].

There is no information of the vicarious nucleophilic substitution of hydrogen atoms attached to carbon atoms of the pyrazole ring in the literature.

We have established that treatment of 1-methyl-4-nitropyrazole (I) with 1,1,1-trimethylhydrazinium halides (II-IV) under mild conditions (DMSO, 20°C) in the presence of dry sodium methoxide or potassium *tert*-butoxide gives 5-amino-1-methyl-4-nitropyrazole (V) in 15-20% yield. A similar reaction has been previously used successfully to prepare aminonitrobenzenes [7].

The reaction of 1-methyl-4-nitropyrazole with 1,1,1-trimethylhydrazinium halides (II-IV) probably includes the intermediate formation of the pyrazolyl anion VI as a result of deprotonation at C_{5} of the pyrazole ring. 1-Methyl-3-nitropyrazole does not react with iodide IV under the same conditions and starting 1-methyl-3-nitropyrazole is recovered from the reaction mixture.

The selectivity of the vicarious amination of 1-methyl-4-nitropyrazole I (substitution of the hydrogen atom at position 5 of the pyrazole ring) may be explained by the charge distribution on the carbon atoms of the pyrazole ring. The *ab initio* calculations using the 6-31* G basis set have shown that in 1-methyl-4-nitropyrazole the positive

Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk 664033, Russia; e-mail: admin@irioch.irk.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, 1254-1256, September, 1999. Original article submitted April 21, 1999.

charge (+0.159) is the highest at position 5 and considerably smaller (+0.095) at position 3. Calculation has shown that atom $C_{(4)}$ in 1-methyl-3-nitropyrazole has a negative charge (-0.316) while atom $C_{(5)}$ has a positive charge (+0.081), but considerably smaller than at $C_{(5)}$ in 1-methyl-4-nitropyrazole I. This is probably the reason for the inactivity of 1-methyl-3-nitropyrazole in the vicarious amination reaction.

5-Amino-1-methyl-4-nitropyrazole (V). Trimethylhydrazinium iodide IV (8.28 g, 0.041 mol) was added slowly with stirring to solution of 1-methyl-4-nitropyrazole (5 g, 0.039 mol) in absolute DMSO (60 ml). The mixture was stirred at 20°C until solution was complete, and dry sodium methoxide (4.43 g, 0.082 mol) was then added. The solution became intensely red after 5-7 min. It was stirred for 40 h at 20°C, then poured onto ice and acidified to pH 3.0 with 10% HCl solution. The precipitate of pyrazole V was filtered off and the filtrate extracted three times with ethyl acetate. The ethyl acetate solution was treated with ammonium chloride solution and water, and dried over MgSO₄. The ethyl acetate was removed in vacuum, the residue combined with the previously obtained pyrazole V and recrystallized from methanol and then from hot water to give V (1.1 g, 20%); mp 264-266°C (lit. mp 265°C [5]).

The yield of V was not changed when potassium tert-butoxide was used.

IR spectrum (KBr): 3420 ($_{VNH_2}$), 3152 ($_{VCH ring}$), 1640 ($_{\delta NH_2}$), 1580 ($_{VC=N ring}$), 1520 ($_{VNO_2}$), 1210 ($_{\delta CH ring}$). ¹H NMR spectrum (DMSO-d₆): 3.56 (3H, s, Me); 7.38 (2H, s, NH₂); 7.84 ppm (1H, s, C₍₃₎H). ¹³C NMR spectrum (DMSO-d₆): 35.04 (CH₃); 117.84 (C₍₄₎); 134.37 (C₍₃₎); 146.01 ppm (C₍₅₎). Mass spectrum, *m/z*: 142 [M]⁺. Found, %: C 33.76; H 4.30; N 39.29. Calculated %: C 33.80; H 4.22; N 39.43.

The reactions of pyrazole I with 1,1,1-trimethylhydrazinium chloride (II) and bromide (III) were carried out analogously to give 12 and 13% yields of 5-aminopyrazole, respectively. Strong resinification of the reaction mixture prevented isolation of unreacted 1-methyl-4-nitropyrazole or any other reaction products.

This work was carried out with the financial support of project No. 98-03-32899 RFFI.

REFERENCES

- 1. S. A. Shevelev, V. M. Vinogradov, I. L. Dalinger, and T. I. Cherkasova. *Izv. Akad. Nauk, Ser. Khim.*, 11, 1945 (1993).
- 2. H. Dorm and H. Dilcher, *Lieb. Ann. Chem.*, 707, 141 (1967).
- 3. S. A. Shevelev and I. L. Dalinger, Zh.Org. Khim., 34, 1127 (1998).
- 4. V. P. Perevalov, L. I. Baryshnenkova, M. A. Andreeva, Yu. A. Manaev, I. A. Denisova, B. I. Stepanov, and V. I. Seraya, *Khim. Geterotsikl. Soedin.*, No. 12, 1672 (1983).
- 5. M. A. Khan and B. M. Lynch, Can. J. Chem., 49, 3566 (1971).
- 6. V. M. Vinogradov, I. L. Dalinger, and S. A. Shevelev, *Mendeleev Commun.*, No. 3, 111 (1993).
- 7. P. F. Pagoria, A. R. Mitchel, and R. D. Schmidt, J. Org. Chem., 61, 2934 (1996).